Ecological Risk Assessment Conflict Resolution

As an aid to Regional and Area Contingency Planning

Why was the Process developed?

- To offer a risk based approach to planning
- To build consensus understanding of environmental tradeoffs in response
- To help develop better response plans

What is an this Consensus ERA?

• Not Scientific investigation but a sharing of scientific understanding

How was the process developed?

- Need to evaluate all alternatives recognized
- EPA and CG Risk Based Guidelines
- CG/industry/state workshops
 - Baltimore, Puget Sound, San Fran, Galveston
 - Mobile and LIS

How will it benefit planning?

- Mechanism for response action comparison
- Consensus building tool
- Defensible analysis of tradeoffs

How Does It Relate to Other Planning Considerations?

- Ecological consequences are one element
- Must be integrated with other factors:
 - social
 - economic
 - legal
 - political
 - feasibility

What are the basic elements?

- Stakeholder Participation
- Problem Formulation
- Conceptual Model
- Analysis
- Risk Characterization

Problem Formulation

- Four Tasks:
 - Understand the potential risk in area
 - Outline management goals
 - Create a spill scenario
 - Develop a list of plausible response options

Process Conceptual Model

Conceptual Model Matrix

Hab itats:		Terrestrial								Intertidal Shoreline									
Sub-Habitats:									Marsh/Tidal Flat					Sandy Beach					
RESOURCES:	Arthropods	Fish	Birds	Crustaceans	Infama	Mamm als	Molluses	Fish	Infauna	Mammals	Molluses	Repüles/amphibians	vegetation	Birds	Crustaceans	Infama	Mamm als	Molluses	
STRESSORS:																			
Natural Recovery	1,7	1,7	1,4,7	1,2,4, 7	2,4,7	1,4,7	2,4,7	2,4,7	2,4,7	1,4,7	2,4,7	1,2,4, 7	2,4	1,4,7	1,2,4, 7	2,4,7	1,4,7	2,4,7	
On-Water Recovery	6	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Sho reline C lea nup	3,4,6	4,6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Oil + Dispersant	NA	NA	4,7	2,7	2,7	7	2,7	2,7	2,7	4,7	2,7	2,7	2	4,7	2,7	2,7	7	2,7	
ISB	1	1	1	NA	NA	1	NA	5,7	4,5,7	1,4,5, 7	4,5,7	1,4,5, 7	4,5	1	NA	NA	1	NA	

These hazards represent changes from oil only scenario.

Shaded zones indicate areas of emphasis for the risk analysis

1 = Air Pollution, 2 = Aquatic Toxicity, 3 = Physical Trauma (mechanical impact), 4 = Oiling/Smothering, 5 = Thermal (from ISB),

6 = Waste, 7 = Indirect (food web, etc.) N/A means no interaction

The Analysis

- Characterize exposure and effect
- Given theoretical degree of exposure, estimate the impact on resources and habitats

Recovery Time > 6 years 3-6 years 1-3 years < 1 year Magnitude of Impact* High 1A 2A 3A 4A (A) Moderate/High 1B 2B 3B 4B (B) Moderate/Low 10 2C 3C 4C Low 1D 2D (D) 3D 4D

*Note: Magnitude of Impact is based upon percentage of resource affected.

Risk Characterization

Comparative Risk Rankings

		T	errestr	ial		Intertidal Shoreline													
						Marsh/Tidal F1at									Sandy Beach				
Resources	Arthropods	Birds	Mamm als	Repüles/Amphibianss	V egetation	Birds	Crustaceans	Fish	Infama	Mamm als	Mollusks	Repüles/Amphibians	V egetation	Birds	Crustaceans	Infama	Mamm als	Mollusks	
Α	4D	1D	4D	2D	3D	2B	3C	3D	4D	4D	4C	NA	3B	1A	3B	4D	4D	4C	
Α	1D					2B								1A					
В	4D	4D	3D	NA	NΑ	3B	3C	4C	3C	3D	3C	2C	4C	2C	3C	4D	3D	3D	
В	4D					3C								3C					
С	4D	4C	4D	4D	4D	2B	3C	3D	3D	1A- 4D	3C	3D	3D	2B	3C	3D	4D	4D	
С	4C						2B								2B				

Simplified Consensus Process

- Pre-Workshop framing the environment
- At the Workshop Training the process & Assessing the impacts
- Post-Workshop focused planning

Current Status

 ERAs in near shore areas: Long Island Sound, Mississippi Sound, Portland Maine and the Caribbean

ERA Conflict Resolution Future

FY04 -05

Inland Rivers

PAC Northwest

ERA Guidelines available at:

http://ecosystemmanagement.net/CG%20E RA%20Guidance%20Man ual%20Final%20May200 1.pdf